If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-38x+7=0
a = 19; b = -38; c = +7;
Δ = b2-4ac
Δ = -382-4·19·7
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-4\sqrt{57}}{2*19}=\frac{38-4\sqrt{57}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+4\sqrt{57}}{2*19}=\frac{38+4\sqrt{57}}{38} $
| 3x+7-4x=9 | | -35b+5b=12.70 | | 324=-6(8m+2) | | 5b-(-27)=87 | | 2y+5=3(4y-6) | | 4(7k-3)+4k=-204 | | 6+2(x-5)=2x+5 | | 3(5a-2)=-126 | | 4x(9+2)=88 | | -140=-5(4-4x) | | 5(y+4)=8*0 | | -270=5(2-8x) | | (4,3)m=1/2 | | (x+2(5x-13))/7=8x-17+3(-2x-15) | | 24-4v=2v | | 2/3=4x/21 | | 11x=81+2x | | 4x(9+2=88 | | 27/16=x^2 | | 14y=24+6y | | 6(8g+6)+45=153 | | 8u=u+35 | | n÷36=7.5 | | 22/16=x^2 | | 3c+5=2c+27 | | 5(y+4)=8*1 | | 1/4×p=7 | | (6+3x)8=0 | | 12=(8-y) | | 2(x+11)=-26 | | -60=5(4x-4) | | -10+x/7=-13 |